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Outline

•Why bother with LOGOs and matrices?

–Summarizing information across sequences

–When consensus sequences fail

•LOGO plots

–How to construct them

–How to interpret them

•Weight matrices

–How to construct them

–How to apply them  
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This week

Next week
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Consensus sequences

•TATA/Pribnow box 

–“TATAAT”

•Shine-Dalgarno sequence

–“AGGAGG”

•Where do we get our knowledge from:

–Observing many sequences

–Multiple alignments
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Why do we care about sequence motifs?

•Points to a molecular mechanism

•We can learn something new directly from 
comparing a lot of sequences

•Makes it possible to scan new sequences for 
known elements (e.g. “gene finding”)
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Does one size fit all?
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• Consensus sequences are more like a rule of thumb — only a few 
Pribnow boxes actually look like “TATAAT”

TATAAT ATG

-10 frequencies

T    A    T    A    A    T

77%  76%  60%  61%  56%  82%

• LOGO plots and weight matrices were 
invented to solve this
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CASE: RNA splicing
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RNA splicing – what is known?

•The splicing signal is contained WITHIN the 
intron

•Always* starts with GU (“donor site”) and ends 
with AG (“acceptor site”)

–GT / AG at the DNA level

•QUESTION: can we find any additional signal?
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* Terms and conditions apply – batteries not included
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Step 1: Define biological question

•Example:

•What is the signal around the acceptor site
across all yeast (Saccharomyces cerevisiae) 
introns?

•This is important: what we find could be 
different if we compared to other organisms
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Step 2: Gather data
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• Download data from the yeast 
genome website

• Write a small program* to extract the 
intron/exon boundaries

• Stack up the sequences around the 
acceptor sites to make it easy to 
compare 

ExonIntron

...AG

GTTCTTCGTGTTTATTTTTAGGAAATTGATGA

TTGTTTCTCCTTTTAAAATAGTACTGCTGTTT

TTTACTAACGACACATTGAAGAAATCACTTTG

GATACGCTTACCGTTATCCAGAGCTACAGCGC

TACTAATATGTAATACTTCAGCTCCCCTTAAT

ATTGAGATCTTTTTTAACTAGTTAGGTCTACC

TTCTCCCCTTCTTCATTTTAGCCTGTTTGGAC

TAACATAACTTATTTACATAGTGCCATTGAAC

GATATTTCCCGTTGTGTTAAGGCTGAGAAGAA

TTTTCCCGACCATCAAGACAGGTGATTTATCA

TGCAAAAACTTTTTTTCACAGGGCTAACTTGC

GTTTATTGTGTTTCCACTCAGTTAAAAAACGA

AACGTACTTTAATATTTATAGTACTTCATTCG

AACATGCTATTTTTCATACAGCAACCTCACAT

CTGCACTCATCATTAGATTAGAGGAACATGGA

TACTTTTCTTTATCTAAGCAGCTAACTCAACT

ATCAACATGCTATTGAACTAGAGATCCACCTA

TAACTAACATGACTTTAACAGGGCTAATTTAC

AGTACTAACTAATTAACTTAGAACATTAACAT

GATCACCGTCACATTTATTAGAATTTCAAACG

CAGTGGAATTTTTTTTTCTAGAAATGGTATCG

CTCTATGACCAATAAAAACAGACTGTACTTTC

AAATGGTATTATTTATAACAGTTGAACATTTC

ATAAATATGCGATCAATATAGACCGTTGATAT

ATTTTACTTTTTTTTTTTTAGGAGCTCCAAGA

ATTTATTTCCTTATAATACAGACACGGTTACA

TCGCAATTAATTTTCTAATAGTTTTTCATTTT

GACCATCTTTCTTTTCCCCAGTGCTAAACACG

...
* Or team up with a bioinformatician for this step
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Step 3: statistics for each position
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•Count occurrences

• Calculate frequencies (calc. for each column)
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Step 4: Visualize the data
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•Naïve visualization:

• AKA frequency LOGO

– Each letter is proportional to the observed frequency

– Easier overview than just looking at the tables 

• BUT …. Are the observations significant??
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How surprised are we at the observations?

12

•Frequency logo:

That’s a lot of Ts
and As

Surely, this 
cannot be 
random?

Hmm – looks pretty 
scrambled over 
here
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How surprised are we at the observations?
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•Frequency logo:

That’s a lot of Ts
and As

Surely, this 
cannot be 
random?

Hmm – looks pretty 
scrambled over 
here

How does this compare to what we 
should expect by chance?
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Information theory to the rescue

•Assumption (for now) – each letter (A, T, G, C) 
has the same background frequency

– If you pick a random position each letter will be picked 
with 25% probability

•But – if there actually is a signal your observed
probabilities will deviate from the expected

•This can be quantified by calculating the 
information content in each position in the 
data set (multiple alignment)
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The bit as a yes/no answer
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PyrimidinePurine
Chemical structure of thymine

Chemical structure of cytosine

Thymine (T)

Cytosine (C)

Adenine.svg

Adenine (A)

Guanin.svg

Guanine (G)

“Weak”

(2 H bonds)

“Strong”

(3 H bonds)

Question #1:

Is it a purine?

(yes/no => 1/0)

Question #2:

Is it a weak bond?

(yes/no => 1/0)

0,0 = C (no, no)

0,1 = T (no, yes)

1,0 = G (yes, no)

1,1 = A (yes, yes)

Q1Q2

https://en.wikipedia.org/wiki/File:Thymine_chemical_structure.png
https://en.wikipedia.org/wiki/File:Cytosine_chemical_structure.png
https://en.wikipedia.org/wiki/File:Adenine.svg
https://en.wikipedia.org/wiki/File:Guanin.svg
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The bit as a yes/no answer
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•To specify one out of 
eight possibilities, you 
need to answer three 
yes/no questions

•In other words: Having 
eight (equally probable) 
possibilities yields an 
uncertainty of three bits
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N equally probable possibilities
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But what happens if we already have some
information?
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Question #1:

Is it a purine?

(yes/no => 1/0)

Question #2:

Is it a weak bond?

(yes/no => 1/0)

0,0 = C (no, no)

0,1 = T (no, yes)

1,0 = G (yes, no)

1,1 = A (yes, yes)

But what happens if we already have some
information?
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But what happens if we already have some
information?
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Generalized:
What if probabilities are not equal?

•If one possibility is more probable than the 
others, uncertainty will be lower:

21

N : number of symbols 

(A,T,G,C) = 4

1. For each symbol calculate: 
Frequency * log2(frequency)

2. Sum it all up
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Information content

22

Maximum entropy Observed entropy

N : number of symbols 

(A,T,G,C) = 4

1. For each symbol calculate: 
Frequency * log2(frequency)

2. Sum it all up
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Information content
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Theoretical questions:

1. What is the maximum Rseq? (we are most surprised)

2. What is the minimum Rseq (we are NOT surprised)

N : number of symbols 

(A,T,G,C) = 4

1. For each symbol calculate: 
Frequency * log2(frequency)

2. Sum it all up
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Step 5: Scale the visualization
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Scale height by information content
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Making sequence logos – handout
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CASE: MHC class 1 epitopes
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The “snobby waiter” – only 
accepts the very best 
peptides
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Only a few peptides will be “seen”

30

In this case 9 amino acid peptides



DTU Bioinformatics, Technical University of Denmark

Step 1: Define biological question

•Prior knowledge: it is known that the sequence 
of the 9 amino acids is critical for the binding to 
MHC class 1

•Question: Can we describe the sequence 
pattern (motif) needed for MHC class 1 binding?

•(This can help us in vaccine design !!!)

31
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Step 2: Build data set
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SLLPAIVEL YLLPAIVHI TLWVDPYEV GLVPFLVSV KLLEPVLLL LLDVPTAAV LLDVPTAAV LLDVPTAAV

LLDVPTAAV VLFRGGPRG MVDGTLLLL YMNGTMSQV MLLSVPLLL SLLGLLVEV ALLPPINIL TLIKIQHTL

HLIDYLVTS ILAPPVVKL ALFPQLVIL GILGFVFTL STNRQSGRQ GLDVLTAKV RILGAVAKV QVCERIPTI

ILFGHENRV ILMEHIHKL ILDQKINEV SLAGGIIGV LLIENVASL FLLWATAEA SLPDFGISY KKREEAPSL

LERPGGNEI ALSNLEVKL ALNELLQHV DLERKVESL FLGENISNF ALSDHHIYL GLSEFTEYL STAPPAHGV

PLDGEYFTL GVLVGVALI RTLDKVLEV HLSTAFARV RLDSYVRSL YMNGTMSQV GILGFVFTL ILKEPVHGV

ILGFVFTLT LLFGYPVYV GLSPTVWLS WLSLLVPFV FLPSDFFPS CLGGLLTMV FIAGNSAYE KLGEFYNQM

KLVALGINA DLMGYIPLV RLVTLKDIV MLLAVLYCL AAGIGILTV YLEPGPVTA LLDGTATLR ITDQVPFSV

KTWGQYWQV TITDQVPFS AFHHVAREL YLNKIQNSL MMRKLAILS AIMDKNIIL IMDKNIILK SMVGNWAKV

SLLAPGAKQ KIFGSLAFL ELVSEFSRM KLTPLCVTL VLYRYGSFS YIGEVLVSV CINGVCWTV VMNILLQYV

ILTVILGVL KVLEYVIKV FLWGPRALV GLSRYVARL FLLTRILTI HLGNVKYLV GIAGGLALL GLQDCTMLV

TGAPVTYST VIYQYMDDL VLPDVFIRC VLPDVFIRC AVGIGIAVV LVVLGLLAV ALGLGLLPV GIGIGVLAA

GAGIGVAVL IAGIGILAI LIVIGILIL LAGIGLIAA VDGIGILTI GAGIGVLTA AAGIGIIQI QAGIGILLA

KARDPHSGH KACDPHSGH ACDPHSGHF SLYNTVATL RGPGRAFVT NLVPMVATV GLHCYEQLV PLKQHFQIV

AVFDRKSDA LLDFVRFMG VLVKSPNHV GLAPPQHLI LLGRNSFEV PLTFGWCYK VLEWRFDSR TLNAWVKVV

GLCTLVAML FIDSYICQV IISAVVGIL VMAGVGSPY LLWTLVVLL SVRDRLARL LLMDCSGSI CLTSTVQLV

VLHDDLLEA LMWITQCFL SLLMWITQC QLSLLMWIT LLGATCMFV RLTRFLSRV YMDGTMSQV FLTPKKLQC

ISNDVCAQV VKTDGNPPE SVYDFFVWL FLYGALLLA VLFSSDFRI LMWAKIGPV SLLLELEEV SLSRFSWGA

YTAFTIPSI RLMKQDFSV RLPRIFCSC FLWGPRAYA RLLQETELV SLFEGIDFY SLDQSVVEL RLNMFTPYI

NMFTPYIGV LMIIPLINV TLFIGSHVV SLVIVTTFV VLQWASLAV ILAKFLHWL STAPPHVNV LLLLTVLTV

VVLGVVFGI ILHNGAYSL MIMVKCWMI MLGTHTMEV MLGTHTMEV SLADTNSLA LLWAARPRL GVALQTMKQ

GLYDGMEHL KMVELVHFL YLQLVFGIE MLMAQEALA LMAQEALAF VYDGREHTV YLSGANLNL RMFPNAPYL

EAAGIGILT TLDSQVMSL STPPPGTRV KVAELVHFL IMIGVLVGV ALCRWGLLL LLFAGVQCQ VLLCESTAV

YLSTAFARV YLLEMLWRL SLDDYNHLV RTLDKVLEV GLPVEYLQV KLIANNTRV FIYAGSLSA KLVANNTRL

FLDEFMEGV ALQPGTALL VLDGLDVLL SLYSFPEPE ALYVDSLFF SLLQHLIGL ELTLGEFLK MINAYLDKL

AAGIGILTV FLPSDFFPS SVRDRLARL SLREWLLRI LLSAWILTA AAGIGILTV AVPDEIPPL FAYDGKDYI

AAGIGILTV FLPSDFFPS AAGIGILTV FLPSDFFPS AAGIGILTV FLWGPRALV ETVSEQSNV ITLWQRPLV

“Known binders” – from experimental studies
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Information content for proteins
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LLDVPTAAV

LLDVPTAAV

VLFRGGPRG

MVDGTLLLL

YMNGTMSQV

MLLSVPLLL

SLLGLLVEV

ALLPPINIL

TLIKIQHTL

HLIDYLVTS

ILAPPVVKL

ALFPQLVIL

GILGFVFTL

STNRQSGRQ

GLDVLTAKV

RILGAVAKV

QVCERIPTI

• Basics: same as for DNA but with a larger alphabet:

• Calculate pa at each position

• Entropy

• Information content

• Conserved positions

– pV=1, p!V=0 ⇒ H=0, R=log2(20)≈4.3

• Mutable positions

– pa=1/20 ⇒ H=log2(20), R=0
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Issue: Background frequencies
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•Amino acid frequencies are far 
from equal

•We need to take this into 
account in the information 
content calculation
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Relative information content

35

•Not all amino acids are found equally frequent in 
nature. L is found 10% and W only 1.3% of the time.

•The relative information content (also called the 
Kullback-Leibler divergence) takes this into account

If qa = 0.05 for all 

amino acids
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Step 3: epitope LOGO
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HLA-A0201

High information 

positions
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Take home messages

• ”Consensus sequences” are very incomplete descriptions 
of motifs

• Sequence logos are better descriptions

• The information content of a position is a measure of 
conservation

• The information content of a position is calculated as a 
difference in uncertainty

37
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