

18281828

Sequence information and LOGO plots

Or: How to summarize and quantify sequence motifs

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x)$

Rasmus Wernersson / Henrik Nielsen, November 2024

With examples from Morten Nielsen and Ole Lund

DTU Bioinformatics Department of Bio and Health Informatics

Outline

- Why bother with LOGOs and matrices?
 - -Summarizing information across sequences
 - When consensus sequences fail

5'

Consensus sequences

- Promoter Template •TATA/Pribnow box 5' -"TATAAT" TATA box Start point Template DNA strand
- Shine-Dalgarno sequence -"AGGAGG"
- Where do we get our knowledge from: -Observing many sequences -Multiple alignments

Why do we care about sequence motifs?

- Points to a molecular mechanism
- We can learn something new directly from comparing a lot of sequences
- Makes it possible to scan new sequences for known elements (e.g. "gene finding")

Does one size fit all?

 Consensus sequences are more like a rule of thumb — only a few Pribnow boxes actually look like "TATAAT"

 LOGO plots and weight matrices were invented to solve this

CASE: RNA splicing

RNA splicing – what is known?

- •The splicing signal is contained WITHIN the intron
- Always* starts with GU ("donor site") and ends with AG ("acceptor site")
 –GT / AG at the DNA level
- **QUESTION:** can we find any additional signal?

* Terms and conditions apply – batteries not included

Step 1: Define biological question

- Example:
- What is the signal around the **acceptor site** across all **yeast** (*Saccharomyces cerevisiae*) introns?
- •This is important: what we find could be different if we compared to other organisms

Step 2: Gather data

- Download data from the yeast genome website
- Write a small program^{*} to extract the intron/exon boundaries
- Stack up the sequences around the acceptor sites to make it easy to compare

...AG Intron Exon GTTCTTCGTGTTTATTTTT<mark>AG</mark>GAAATTGATGA TTGTTTCTCCTTTTAAAAT<mark>AGTACTGCTGTT</mark>' TTTACTAACGACACATTGA<mark>AG</mark>AAATCACTTTC GATACGCTTACCGTTATCC<mark>AG</mark>AGCTACAGCGC TACTAATATGTAATACTTC<mark>AGCTCCCCTTAA</mark>T ATTGAGATCTTTTTTAACT<mark>AGTTAGGTCTACC</mark> TTCTCCCCTTCTTCATTTT<mark>AG</mark>CCTGTTTGGAC TAACATAACTTATTTACAT<mark>AGTGCCATTGAAC</mark> GATATTTCCCGTTGTGTTA<mark>AG</mark>GCTGAGAAGAA TTTTCCCGACCATCAAGAC<mark>AGGTGATTTATC</mark>A ТĠĊĂĂĂĂĂĂĊŢŢŢŢŢŢŢĊĂĊ<mark>ĂĠĠĠĊŢĂĂĊŢŢĠĊ</mark> GTTTATTGTGTTTCCACTC<mark>AG</mark>TTAAAAAACGA AACGTACTTTAATATTTA<mark>TAGTACTTCA</mark> AACATGCTATTTTTCATAC<mark>AGCAACCTCACA</mark> CTGCACTCATCATTAGATT<mark>AG</mark>AGGAACATGG TACTTTTCTTTATCTAAGC<mark>AGCTAACTCAACT</mark> ATCAACATGCTATTGAACT<mark>AGAGATCCACCTA</mark> TAACTAACATGACTTTAAC<mark>AG</mark>GGCTAAT AGTACTAACTAATTAACTT<mark>AG</mark>AACATTAACAT GATCACCGTCACATTTATT<mark>AGAATTTCAAACG</mark> CAGTGGAATTTTTTTTTTCT<mark>AGAAATGGTATCG</mark> CTCTATGACCAATAAAAAC<mark>AGACTGTACTTTC</mark> AAATGGTATTATTTATAAC<mark>AGTTGAACATTT(</mark> ATAAATATGCGATCAATAT<mark>AGACCGTT</mark> ATTTTACTTTTTTTTTTTT<mark>TAG</mark>GAGCTCC ATTTATTTCCTTATAATACAGACACGGTTAC TCGCAATTAATTTTCTAAT<mark>AG</mark>TTTTTCATTTT

Step 3: statistics for each position

Count occurrences

Α	94	88	84	75	78	78	71	69	70	60	68	77	32	49	87	93	93	134	9	266	o	86	66	85	81	89	81	88	82
С	31	45	52	44	56	46	62	54	56	51	46	37	30	42	32	44	30	25	122	1	0	38	65	52	43	62	62	57	43
Т	113	110	113	117	104	117	111	120	118	125	136	140	182	155	122	100	124	75	137	0	0	72	85	82	91	83	73	67	96
G	30	25	19	32	30	27	24	25	24	32	18	14	24	22	27	31	21	34	0	1	268	72	52	49	53	34	52	56	47

Calculate frequencies (calc. for each column)

Α	0,35	0,33	0,31	0,28	0,29	0,29	0,26	0,26	0,26	0,22	0,25	0,29	0,12	0,18	0,32	0,35	0,35	0,50	0,03	0,99	0,00	0,32	0,25	0,32	0,30	0,33	0,30	0,33	0,31
С	0,12	0,17	0,19	0,16	0,21	0,17	0,23	0,20	0,21	0,19	0,17	0,14	0,11	0,16	0,12	0,16	0,11	0,09	0,46	0,00	0,00	0,14	0,24	0,19	0,16	0,23	0,23	0,21	0,16
Τ	0,42	0,41	0,42	0,44	0,39	0,44	0,41	0,45	0,44	0,47	0,51	0,52	0,68	0,58	0,46	0,37	0,46	0,28	0,51	0,00	0,00	0,27	0,32	0,31	0,34	0,31	0,27	0,25	0,36
G	0,11	0,09	0,07	0,12	0,11	0,10	0,09	0,09	0,09	0,12	0,07	0,05	0,09	0,08	0,10	0,12	0,08	0,13	0,00	0,00	1,00	0,27	0,19	0,18	0,20	0,13	0,19	0,21	0,18

Step 4: Visualize the data

• Naïve visualization:

weblogo.berkeley.edu

- AKA frequency LOGO
 - Each letter is proportional to the observed frequency
 - Easier overview than just looking at the tables
- BUT Are the observations significant??

How surprised are we at the observations?

• Frequency logo:

How surprised are we at the observations?

• Frequency logo:

Information theory to the rescue

- Assumption (for now) each letter (A, T, G, C) has the same background frequency
 - If you pick a random position each letter will be picked with 25% probability
- But if there actually is a signal your **observed** probabilities will deviate from the **expected**
- •This can be quantified by calculating the **information content** in each position in the data set (multiple alignment)

The bit as a yes/no answer

Question #1: Is it a purine? (yes/no => 1/0)

Question #2: Is it a weak bond? (yes/no => 1/0)

Q1 Q2 0,0 = C (no, no) 0,1 = T (no, yes) 1,0 = G (yes, no) 1,1 = A (yes, yes)

The bit as a yes/no answer

- To specify one out of eight possibilities, you need to answer three yes/no questions
- In other words: Having eight (equally probable) possibilities yields an uncertainty of three bits

Figure 1. Three independent choices specify 1 box in 8.

N equally probable possibilities

)

Ν	H (bits
2	1
4	2
8	3
16	4
32	5
N H =	$= 2^{H}$ $\log_2 N$

But what happens if we already have some information?

Question #1: Is it a purine? (yes/no => 1/0)

Question #2: Is it a weak bond? (yes/no => 1/0)

But what happens if we already have some information?

Question #1: Is it a purine? (**yes**/no => 1/0)

Question #2: Is it a weak bond? (yes/no => 1/0)

But what happens if we already have some information?

Question #1: Is it a purine? (yes/no => 1/0)

Question #2: Is it a weak bond? (yes/**no** => 1/0)

Q1 Q2
0,0 = C (no, no)

$$0,1 = T (no, yes)$$

1,0 = G (yes, no)
 $1,1 = A (yes, yes)$

Generalized: What if probabilities are not equal?

• If one possibility is more probable than the others, uncertainty will be lower:

$$H = -\sum_{n=1}^{N} p_n \log_2 p_n$$

- N : number of symbols
- $(\mathsf{A},\mathsf{T},\mathsf{G},\mathsf{C})\,=\,4$

- For each symbol calculate: Frequency * log₂(frequency)
- 2. Sum it all up

Information content $R_{seq} = H_{max} - H_{obs}$ Maximum entropy Observed entropy $\log_2 N - \left(-\sum_{n=1}^{N} p_n \log_2 p_n\right)$ 1. For each symbol calculate: N : number of symbols Frequency * log₂(frequency) (A,T,G,C) = 42. Sum it all up

Information content

Theoretical questions:

- 1. What is the maximum R_{seq} ? (we are most surprised)
- 2. What is the minimum R_{seq} (we are NOT surprised)

$$R_{seq} = H_{\max} - H_{obs} = \log_2 N - \left(-\sum_{n=1}^N p_n \log_2 p_n\right)$$

N : number of symbols

(A,T,G,C) = 4

- For each symbol calculate: Frequency * log₂(frequency)
- 2. Sum it all up

Step 5: Scale the visualization

Scale height by information content

Making sequence logos – handout

Making Sequence logos

Q1) Below is a multiple alignment of 35 human sequences. The sequences have been aligned around a donor splice. That site is indicated as the boundary between the 'Dark blue' and 'Dark red' colours.

----Exon | intron----01234567890123456789 tatcacaATGGTAGGTAACT TCAACCAGGAGTAAGTCTTG GTTGCACCCTGTAAGTCTCA tatcacaATGGTAGGTAACT TCAACCAGGAGAGTAAGTCTTG CTTGCGAGAGGGTAAGTCTTG GCTCTACTCGGTAAGGTGAC GCCTGGAGAGGGTAATGACCC CAAAACCATTGTGAGTAATC GCCAGAGCAGGTAAAATATC GAACAGTCAGGTCTGTTGCT

CASE: MHC class 1 epitopes

Only a few peptides will be "seen"

In this case 9 amino acid peptides

Step 1: Define biological question

- **Prior knowledge:** it is known that the sequence of the 9 amino acids is critical for the binding to MHC class 1
- **Question:** Can we describe the sequence pattern (motif) needed for MHC class 1 binding?
- •(This can help us in vaccine design !!!)

Step 2: Build data set

SLLPAIVEL	YLLPAIVHI	TLWVDPYEV	GLVPFLVSV	KLLEPVLLL	LLDVPTAAV	LLDVPTAAV	LLDVPTAAV
LLDVPTAAV	VLFRGGPRG	MVDGTLLLL	YMNGTMSQV	MLLSVPLLL	SLLGLLVEV	ALLPPINIL	TLIKIQHTL
HLIDYLVTS	ILAPPVVKL	ALFPQLVIL	GILGFVFTL	STNRQSGRQ	GLDVLTAKV	RILGAVAKV	QVCERIPTI
ILFGHENRV	ILMEHIHKL	ILDQKINEV	SLAGGIIGV	LLIENVASL	FLLWATAEA	SLPDFGISY	KKREEAPSL
LERPGGNEI	ALSNLEVKL	ALNELLQHV	DLERKVESL	FLGENISNF	ALSDHHIYL	GLSEFTEYL	STAPPAHGV
PLDGEYFTL	GVLVGVALI	RTLDKVLEV	HLSTAFARV	RLDSYVRSL	YMNGTMSQV	GILGFVFTL	ILKEPVHGV
ILGFVFTLT	LLFGYPVYV	GLSPTVWLS	WLSLLVPFV	FLPSDFFPS	CLGGLLTMV	FIAGNSAYE	KLGEFYNQM
KLVALGINA	DLMGYIPLV	RLVTLKDIV	MLLAVLYCL	AAGIGILTV	YLEPGPVTA	LLDGTATLR	ITDQVPFSV
KTWGQYWQV	TITDQVPFS	AFHHVAREL	YLNKIQNSL	MMRKLAILS	AIMDKNIIL	IMDKNIILK	SMVGNWAKV
SLLAPGAKQ	KIFGSLAFL	ELVSEFSRM	KLTPLCVTL	VLYRYGSFS	YIGEVLVSV	CINGVCWTV	VMNILLQYV
ILTVILGVL	KVLEYVIKV	FLWGPRALV	GLSRYVARL	FLLTRILTI	HLGNVKYLV	GIAGGLALL	GLQDCTMLV

"Known binders" - from experimental studies

AVEDRIGDA	TTDLAKENG	VIIVIOPINIIV	GUNLLÄUNT	THOMOLEV	LULLOWCIU	VIEWNEDON	T TIMETAA A TUA A
GLCTLVAML	FIDSYICQV	IISAVVGIL	VMAGVGSPY	LLWTLVVLL	SVRDRLARL	LLMDCSGSI	CLTSTVQLV
VLHDDLLEA	LMWITQCFL	SLLMWITQC	QLSLLMWIT	LLGATCMFV	RLTRFLSRV	YMDGTMSQV	FLTPKKLQC
ISNDVCAQV	VKTDGNPPE	SVYDFFVWL	FLYGALLLA	VLFSSDFRI	LMWAKIGPV	SLLLELEEV	SLSRFSWGA
YTAFTIPSI	RLMKQDFSV	RLPRIFCSC	FLWGPRAYA	RLLQETELV	SLFEGIDFY	SLDQSVVEL	RLNMFTPYI
NMFTPYIGV	LMIIPLINV	TLFIGSHVV	SLVIVTTFV	VLQWASLAV	ILAKFLHWL	STAPPHVNV	LLLLTVLTV
VVLGVVFGI	ILHNGAYSL	MIMVKCWMI	MLGTHTMEV	MLGTHTMEV	SLADTNSLA	LLWAARPRL	GVALQTMKQ
GLYDGMEHL	KMVELVHFL	YLQLVFGIE	MLMAQEALA	LMAQEALAF	VYDGREHTV	YLSGANLNL	RMFPNAPYL
EAAGIGILT	TLDSQVMSL	STPPPGTRV	KVAELVHFL	IMIGVLVGV	ALCRWGLLL	LLFAGVQCQ	VLLCESTAV
YLSTAFARV	YLLEMLWRL	SLDDYNHLV	RTLDKVLEV	GLPVEYLQV	KLIANNTRV	FIYAGSLSA	KLVANNTRL
FLDEFMEGV	ALQPGTALL	VLDGLDVLL	SLYSFPEPE	ALYVDSLFF	SLLQHLIGL	ELTLGEFLK	MINAYLDKL
AAGIGILTV	FLPSDFFPS	SVRDRLARL	SLREWLLRI	LLSAWILTA	AAGIGILTV	AVPDEIPPL	FAYDGKDYI
AAGIGILTV	FLPSDFFPS	AAGIGILTV	FLPSDFFPS	AAGIGILTV	FLWGPRALV	ETVSEQSNV	ITLWQRPLV

Information content for proteins

- **Basics:** same as for DNA but with a larger alphabet:
- Calculate p_a at each position
- Entropy $H = -\sum_{a=1}^{N} p_a \log_2 p_a$
- Information content

$$R_{seq} = \log_2 20 + \sum_{a=1}^{20} p_a \log_2 p_a$$

- Conserved positions $-p_V=1, p_{!V}=0 \Rightarrow H=0, R=\log_2(20)\approx 4.3$
- Mutable positions
 - $-p_a=1/20 \Rightarrow H=\log_2(20), R=0$

LLDVPTAAV LLDVPTAAV VLFRGGPRG MVDGTLLLL YMNGTMSOV MLLSVPLLL SLLGLLVEV ALLPPINIL TLIKIOHTL HLIDYLVTS TLAPPVVKL ALFPOLVIL GILGFVFTL STNROSGRO GLDVLTAKV RTLGAVAKV OVCERIPTI

Issue: Background frequencies

- Amino acid frequencies are far from equal
- We need to take this into account in the information content calculation

Amino acid			%
Alanine	Ala	A	7.85
Arginine	Arg	R	5.33
Asparagine	Asn	N	4.55
Aspartic acid	Авр	D	5.37
Cysteine	Сув	C	1.88
Glutamine	Gh	Q	3.77
Glutamic acid	Glu	E	5.83
Glycine	Gly	G	7.35
Histidine	His	H	2.35
Isoleucine	Пе	I	5.80
Leucine	Leu	L	9.43
Lysine	Lys	K	5.88
Methionine	Met	M	2.28
Phenylalanine	Phe	F	4.07
Proline	Pro	P	4.56
Serine	Ser	S	6.04
Threonine	Thr	Т	6.17
Tryptophan	Trp	W	1.31
Tyrosine	Tyr	Y	3.27
Valine	Val	V I	6.92
Unknown		X	

Relative information content

- •Not all amino acids are found equally frequent in nature. L is found 10% and W only 1.3% of the time.
- •The relative information content (also called the Kullback-Leibler divergence) takes this into account

$$I_{KL} = \sum_{a=1}^{20} p_a \log_2\left(\frac{p_a}{q_a}\right)$$

$$I_{KL} = \sum_{a=1}^{20} p_a \log_2 p_a - \sum_{a=1}^{20} p_a \log_2 q_a$$

$$I_{KL} = \log_2 20 + \sum_{a=1}^{20} p_a \log_2 p_a \qquad \text{If } q_a = 0.05 \text{ for all} \\ \text{amino acids}$$

Step 3: epitope LOGO

Take home messages

- "Consensus sequences" are very incomplete descriptions of motifs
- Sequence logos are better descriptions
- The information content of a position is a measure of conservation
- The information content of a position is calculated as a difference in uncertainty