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Preface

This brief introduction to DNA micro-arrays is meant as a short primer for teaching
purposes. It’s written based on my own lab experiences conducting research on the
Yeast cell cycle, and this has a focus on the experimental side of the matter. It’s
based on various texts I’m written earlier, and condensed into this document for the
use the 27040: Introduction to Systems Biology (Bachelor level) in the spring of 2013.

Notice that this document is not meant to cover DNA micro-arrays in all details (this
would require an entire book), but rather to be a primer on the subject, and to support
the lecture slides.

The PDF is formatted for duplex (two-sided) printing/viewing.

Rasmus Wernersson
March 2013
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Chapter 1

A brief introduction to DNA
micro-arrays

The DNA micro-array technology allows the measurement of abundance of a large number
of transcripts1 in parallel. The micro-array technology can be seen as an extension of
the well-known Northern blotting technique (Maniatis et al., 1982), but with a vastly
improved potential for measurement quantity and quality. Whereas Northern Blotting
relies on separation of the RNA fragments on a gel and subsequent hybridization with a
radio-labeled probe targeting the sequence in question, the DNA micro-array technology
uses the approach of fixing a large number of sequence specific probes on a surface, in a
grid-like fashion, and letting labeled target molecules hybridize to the immobilized probes
prior to detection.

The labeling used in DNA micro-arrays are fluorescent dyes which can be excited by a light-
source (laser or lamp) and caused to emit light at a specific wave-length. Two commonly
used dyes are Cy3 and Cy5 (see Figure 1.1 for the molecular structures and emission
spectra). Following hybridization on the DNA micro-array, non-bound target molecules
are washed away, and the array is placed in a scanner which will record the amount of
light emitted from the bound target molecules. By mapping the intensity of light emitted
from each individual position on the probe-grid, it is then possible to estimate the relative
intensities of the transcripts targeted by each probe.

1.1 Main types of DNA micro-arrays

Spotted arrays: The first DNA micro-arrays used full length cDNA molecules (amplified
using PCR) as probes. The probes where spotted onto glass slides (roughly like microscope
slides, see Figure 1.4 [panel A]) with an activated surface capable of binding the DNA
(Schena et al., 1995). The spotting process is the process of placing small droplets
containing the cDNA probes in a organized grid on the micro-array slide, see Figure 1.2.
For automating the spotting and increasing the number of probes that can be spotted,
spotting robots have been developed. Spotted arrays can equally well be used with

1 Mostly the DNA mirco-array technology is used for expression profiling, but the micro-array technology
can equally well be used with DNA as the staring point, for example when using genotyping arrays.
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Figure 1.1: Molecular structure and Emission Spectrum of Cy3 and Cy5. Cy3 and Cy5 are both
members of the ”CyDye” family of fluorescent dyes and have an almost identical structure, only differing
in the number of carbons in the linkage region. As shown in the emission spectrum graphs, Cy3 and Cy5
(indicated by the arrows) are well suited to be used in combination, since the overlap is small. [Source of
images: the manufacturers (Amersham BioSciences) website.]

synthetic oligonucleotide probes.

In situ synthesized arrays: A completely different approach to the construction of DNA
micro-arrays is to synthesize the probes directly on the surface of the array. The approach
was initially commercialized by the company Affymetrix (California, USA) under the name
”GeneChip” (the approach is demonstrated in Lockhart et al. (1996)). The Affymetrix
method of synthesis relies on light-deprotection of the growing DNA oligonucleotide and is
shown in details in Figure 1.3 - (see also, Fodor et al. (1991)). The idea is here to build the
oligonucleotide one base at the time. Starting out with an empty activated silicon surface
(a wafer - like in the production of microprocessors), the synthesis occurs during a series
of coupling steps: in each step the four nucleotides are presented to the entire surface
one at the time, and will be coupled to the growing oligonucleotides in a tightly controlled
manner. The individual positions on the array are targeted for coupling by a light-based de-
protection of the oligonucleotides and the use of a series of lithographic masks to shield the
rest of the array. Since the coupling-efficiency puts a limit to how long the oligonucelotide
can be, chips manufactured with this technique use short probes - usually around 25bp.
To compensate for the short probe-length a number of probes (20 for most Affymetrix
arrays) target different positions in the target transcript. This type of array offers great
reproducibility, but the types of arrays is limited to what the Affymetrix company has
decided to produce. Figure 1.4 [panel B] shows an actual Affymetrix GeneChip R©.

In recent years a few alternative methods for in situ synthesis of micro-arrays that are more
flexible have emerged. Using a micro-mirror device in stead of static lithographic masks,
the synthesis process can be reprogrammed easily - this approach has been commercialized
by NimbleGen (Iceland) (Singh-Gasson et al., 1999; Albert et al., 2003; Stengele et al.,

Written by Rasmus Wernersson (2007-2013)



1.2 Two condition hybridizations 3

Figure 1.2: Spotted microarray. This image shows a pseudo-color image of the combined Cy3/Cy5
channels of a spotted oligo array with 37.500 probes. A sections of the array is shown magnified to
highlight the individual spots. Observe how the spots are arranged in a matrix, allowing the signal for
each spot to be mapped back to the probe in question. Image source: www.wikipedia.org

.

2005) and FEBIT (Germany) (Güimil et al., 2003; Baum et al., 2003). The more flexible
techniques makes it feasible to produce custom arrays even for smaller studies. (In 2005
Affymetrix acquired the NimbleGen company and offers the NimbleGen custom arrays
under the new name ”NimbleExpress”). Custom probe design software suites such as the
”OligoWiz” application (Wernersson et al., 2007), were developed to exploit the flexibilities
of such new technologies.

1.2 Two condition hybridizations

One of the main uses of DNA micro-arrays is to compare the expression of two different
conditions (typically ”treated” vs ”non-treated” or ”mutant” vs ”wildtype”). Figure 1.5
demonstrates the main steps of this type of hybridization. The idea is here to label the
transcripts from one condition with one fluorescent dye (Cy3) and the transcripts from
the other condition with a different fluorescent dye (Cy5). Following hybridization the
array is scanned at the wave-lengths specific for the individual dyes, thus producing two
images which each capture the gene expression under one of the conditions. Following
normalization for the total signal in each image (this compensates for differences in
amount of RNA used and technical issues), the two images are treated as two color
channels (usually red and green) and combined to a single image. Spots of intermediate

For teaching purposes only
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Figure 1.3: Photolithographic in-situ synthesis: Building an Affymetrix GeneChip. These figures
show the steps involved in the production of an Affymetrix GeneChip. Notice how a set of masks are used
to direct which area of the array surface that will be targeted during each round of nucleotide coupling.
Image source: The Science Creative Quarterly, http://scq.ubc.ca/, artist: Jiang Long.
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A B

Figure 1.4: The physical appearance of spotted arrays vs GeneChips. Panel A: Glass slides used
for spotted arrays. The slides shown here is from Bioslide Technologies - http://www.bioslide.com/.
Panel B: Affymetrix GeneChip R©- all affymetrix GeneChips have the same form-factor, the ex-
ample shown here is the human genome array ”U133”. Image source: The Affymetrix website,
http://www.affymetrix.com/

color (yellow in this case) represents transcripts where the expression is of equal magnitude
in the two conditions, and red and green as cases of over-expression in one of the conditions.

The two-condition hybridization is especially useful when working with spotted arrays,
since the problems with chip-to-chip variation (e.g. small differences in spot size) can be
sidestepped here: it is the relative expression of a given gene between the two conditions
that is compared.

1.3 Single condition hybridization

Following the introduction (and maturation) of in-situ synthesized arrays, the problems
with chip-to-chip variation due to differences in the manufacturing of the arrays have
been greatly reduced. This has allowed for a simpler approach for the comparison of
different conditions, by allowing the individual conditions to be probed with individual
arrays (see Figure 1.6 for an example).

When working with time-series data such as the cell cycle experiment described in
(de Lichtenberg et al., 2005b) single-conditions hybridizations will be the most suited,
since the biological problem at hand does not involve comparison of wildtype vs mutant,
but rather a variation of expression as a function of time. For this purpose it is crucial
to be able to compare all the timepoints – for example using computational methods for
detecting genes periodically expressed during the cell cycle (de Lichtenberg et al., 2005a).

For teaching purposes only
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Figure 1.5: Example of two condition hybridization. This figure shows the steps involved in a two-
condition hybridization using a spotted cDNA micro array. Image source: The Science Creative Quarterly,
http://scq.ubc.ca/, artist: Jiang Long.

1.4 The array data analysis pipeline

The use of DNA micro-arrays can be divided into a number of sub-steps as shown in
Figure 1.7, which will be reviewed briefly here.

1.4.1 Experimental design

One of the single most important factors in a successful array experiment is the basic
experimental design: Will the experiment in question actually be able the answer the bi-
ological question asked, and will the data be sufficient for the statistical analysis planned.
For experiments comparing different conditions (e.g. wildtype vs mutant) biological repli-
cates will improve the robustness of the analysis, since stochastic variation is not likely to
be repeated. When working with time-series data, such as cell cycle data, the individual
timepoints will to some degree function as replicates, depending on the number and spac-
ing of the timepoints. If no pilot experiments have been conducted, it may be a good idea
to sample more timepoints than strictly needed (e.g. every 10 minutes instead of every 20
minutes), to have the opportunity of adding in more arrays later, if it turns out to improve
the data analysis significantly.
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Figure 1.6: Example of single condition hybridization. This figures shows a single-condition
hybridization using an Affymetrix GeneChip array. Image source: The Science Creative Quarterly,
http://scq.ubc.ca/, artist: Jiang Long.

1.4.2 Array/Probe design

For experiments where the goal is to measure the gene expression of a well known model
organism (e.g. Yeast), the cheapest and easiest solution will most often be to use a
standard array, like the Affymetrix Yeast Genome 2.0 array, or a commercially available
set of probes for spotting. If no suitable standard solution is available or if the purpose of
the study is to investigate a special condition (like detection of splicing patterns), a custom
array must be designed. For an in-depth review of probe design for DNA micro-arrays,
please refer to Wernersson et al. (2007).

For teaching purposes only
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Sample Preparation
Hybridization

Array design
Probe design

Question
Experimental Design

Buy Chip/Array

Statistical Analysis
Fit to Model (time series)

Expression Index
Calculation

Advanced Data Analysis
Clustering PCA Classification  Promoter Analysis
Meta analysis Survival analysis Regulatory Network

Comparable
Gene Expression Data

Normalization

Image analysis

The DNA Array Analysis Pipeline

Figure 1.7: Outline of the entire array analysis pipeline. See the main text for a detailed explanation.
Figure by Henrik Bjørn Nielsen and Agnieszka S. Juncker.

1.4.3 Sample preparation / hybridization

In order to ensure that the mRNA levels measured actually reflect real biology, it is
critical to sample the cells / tissue in question quickly and to fix the mRNA. For example
a way to do this when working with a Yeast culture could be to mix the sample with ice
immediately after sampling, followed by pelleting the cells quickly in a cooling centrifuge
and freezing the cell pellet in liquid nitrogen (−196◦C). The idea is here to slow down
both transcription and degradation of RNA prior to the relatively long (2-3 minutes)
centrifugation step which cannot be avoided. Once the samples have been fixed, they can
be kept at −80◦C until extraction of total RNA can be performed.

The next step is to extract the total RNA from the samples. This involves both lysing the
cells by enzymatical or mechanical means (e.g. grinding the cells at −196◦C using liquid
nitrogen) and the extraction and purification of the RNA. This could for example be
done using a standard protocol such as the ”hot phenol” protocol, but also a number of
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commercial kits are available. Many of these kits do away with the most toxic chemicals
and are often to be preferred. Most importantly, the quality of the total RNA must be
assessed after the purification. The purity can be assessed by standard methods such as
measuring the A260/A280 ratio on a spectrophotometer. In order to assess if the RNA
has been (partly) degraded, the RNA can checked on an electrophoresis gel or analyzed
using capillary-based equipment, such as a BioAnalyzer. In both cases the ribosomal
RNA bands should be clearly present – a smear indicates degraded RNA.

Following the extraction the RNA is (optionally) amplified and finally labeled. The
amplification/labeling protocol varies depending on the platform, but are often based
upon the Eberwine protocol (Gelder et al., 1990). Both Affymetrix and Ambion offer
commercial kits for the entire process for the Affymetix platform. Notice that it is
important to be aware of the strandness of both the probes and the targets: both the
Eberwine protocol and the standard Affymetrix protocol will revert the strandness of the
probe (mRNA = sense → (DNA intermediates) → labeled aRNA/cRNA = anti-sense).
In this case the probes must also be sense1, in order to detect the targets.

Finally the labeled target molecules are fragmented and hybridized to the array. A num-
ber of different commercial incubators exist, but the principle is the same: to incubate
the array at a fixed temperature, usually over night or up to 16 hours. Following the
hybridization the arrays or carefully washed, in order to remove non-bound targets, and
the arrays are scanned at a wavelength appropriate for the dye being used. This is the
last ”wet-lab” step, which will produce the data for the downstream processing.

1.4.4 Image analysis

The image analysis is the process of converting the digital image from the scanning to
expression values assigned to the individual probes. The first step is gridding, which is
the process of determining the location of each individual ”feature” on the array (e.g.
one spot on spotted arrays). This can especially be a problem for spotted arrays, due to
irregularities in the spotting, and the gridding procedure may have to be aided by hand.
Furthermore the area that will be used to determine the intensity of each spot must be
defined. For Affymetrix / NimbeExpress arrays the gridding step is almost always handled
automatically. Secondly, the signal intensity in the area around each feature (”spot”) is
converted to a single expression value.

1.4.5 Normalization

Array vs. array normalization

Before it is meaningful to compare the signal from two (or more) arrays, it is necessary to
make the data comparable. This means removing (by mathematical means) differences in
the signal that are due to technical issues (for example slight differences in hybridization

1 Affymetrix sometimes list this condition as ”anti-sense detecting” which only adds to the confusion.
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conditions) while retaining the differences that reflect real biological differences. Fig-
ure 1.8 visualizes the effect of normalization on array vs. array comparison. Observe that
the data-points far off the diagonal are likely to correspond to real biological variation
between the two conditions.

A substantial effort has been put into developing good methods for array vs. array nor-
malization during the recent years. Well established algorithms currently in use by the
scientific community includes qspline (Workman et al., 2002), LOWESS (Cleveland, 1979),
Quantiles (Bolstad et al., 2003) and RMA (Irizarry et al., 2003).

Probe affinity normalization

A different approach to normalization is to make the individual probes comparable within
the array. The issue is that even probes targeting the same transcript, which in theory
should pick up exactly the same signal, express a wide variation of signal intensities. In
order to fully make the probes comparable it is important to correct for differences in the
sequence specific annealing affinity to the target.

Being able to compare the signal from the individual probes is especially important when
working with splice-detecting arrays, since differential splicing will cause the signal for part
of a given transcript to be modified (e.g. the signal from a single exon may completely
disappear). Also, when designing probes for a splice-detecing array the placement of the
probes will often be restricted to a specific sub-part of the transcript (e.g. an Exon/Intron
junction), and there will be very limited possibility to move ”bad” probes to a different
position. As an example of an approach of solving this problem using a thermodynamic
model of annealing, please refer to Bruun et al. (2007).

Figure 1.8: Effect of normalization on array to array comparison. The plots show how the
expression values for each individual transcript compare to each other on two arrays, before and after
qspline normalization. Figure by Carsten Friis.
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1.4.6 Expression index calculation

If the array uses more than one probe per transcript (e.g. Affymetrix GeneChips), all the
individual values are usually collapsed into a single value representing the level of expres-
sion for the transcript as a whole (the Gene Expression index). A number of algorithms
has been developed for this purpose, from simply calculating the median to more advanced
methods (dChip (Li and Wong, 2001), RMA (Irizarry et al., 2003), MAS5 (Hubbell et al.,
2002)) which are robust towards outlier values.

1.4.7 Statistical analysis

Depending on the nature of the experiment different kinds of statistical analysis can
be applied in order to find the genes that are differentially expressed in-between the
experimental conditions investigated (e.g. ”Cancer” vs. ”normal” tissue). Among the
most widely used statistical tools are the T-Test and ANOVA, which can be used to
identify the individual genes that are significantly differentially expressed between the
sample groups.

with four CCR patients, while only one single relapse patient
cluster with the CCR patients. The cluster analysis pattern thus
supports the fact that several of the CCR patients are predicted as
relapsed patients, while only few relapse patients are predicted
as CCR patients.

It has previously been reported possible to predict relapse in
certain subgroups of ALL by use of gene expression data6 with a
prediction accuracy of 97% for T-lineage ALL. However, it has
later been discovered that this prediction accuracy was over-
estimated since it was based on LOOCV only during classifier
training while the feature selection step had not been included
in the LOOCV procedure. The performance was subsequently
re-estimated (James R Downing, December 2003) and resulted
in a much lower classification accuracy of 73.5% using the top
50 ranked genes in a t-test and data pretreatment by Affymetrix
MAS 5.0. However, the specificity for relapse cases was only
25% giving a CC of 0.16.

The CCs for prediction of relapse independently of immuno-
phenotype found in the present study (0.59 and 0.56 for the
LOOCV training and the independent test sets, respectively)
were significantly higher than the CC obtained for T-lineage
samples for the re-evaluated data set from Yeoh et al,6 while the
prediction accuracy obtained in the present study (78%) was
only slightly higher than the re-estimated accuracy obtained by
Yeoh et al.6 The better results obtained in our study might partly
be due to the different treatments that patients had received in
these two studies as well as differences in the period for EFS
applied to define patients with CCR, where we defined the
minimum period of EFS to be 5 years, while patients with shorter
EFS period were included as CCR patients in the study of Yeoh
et al.6

Moreover, it was reported by Yeoh et al6 that it was
not possible to predict relapse across subtypes of ALL. However,
the results from our study indicated that an at least as good
classification performance could be obtained when predic-
ting relapse independently of ALL immunophenotype compared
to prediction of relapse for preB and T patients separately
(data not shown). However, this may partly be attributed to
the fact that a limited number of patients were available for
each of these subtype-specific classifiers. Especially, when
taking into consideration that there are many subtypes of ALL,
we cannot expect to find a common expression profile for
relapse for all subtypes. Thus, the low prediction accuracy of
clinical outcome is not surprising. The chances for cure for
individual patients will reflect the leukemic clone, the host, and
the treatment. A number of different leukemia-related biological
features such as chromosomal translocations, multiple drug
resistance gene activity, and deregulated apoptotic pathways
may influence clinical outcome, and their impact may differ
between different subsets of ALL. In addition, the strongest
prognostic factor is treatment itself. Thus, patients are assigned
to different risk groups that are offered different treatment
protocols, the bioavailability and disposition of the anticancer
agents may differ among patients, and both physician and
patient compliance to the treatment protocols may significantly
influence the chances for cure. Further improvement of the
outcome prediction using DNA microarrays may necessitate
analysis of both tumor samples and patient germline samples
that allow identification of genetic polymorphisms that influ-
ence drug disposition. Such data should be analyzed within
biological well-defined subsets of leukemias treated by similar
therapeutic strategies.

Figure 3 Horizontal: Hierarchical clustering of the 28 ALL patients with known 5-year outcome based on the gene expression levels of the 19
genes. For each patient, the number and outcome, relapse (R) or CCR (C), are given. Vertical: Hierarchical clustering of the 19 genes found to be
predictive for long-term outcome based on gene expression levels. The Affymetrix id and gene symbol is given for each gene. The color scale
shows the logarithm of the gene expression value relative to the mean logarithmic gene expression for each gene.

Class prediction of childhood ALL by microarrays
H Willenbrock et al

6

Leukemia

Figure 1.9: Example of 2D hierarchical clustering. This example shows a heatmap where leukemia
patients are clustered according to their gene expression profile for the 28 most significant genes. Figure
by Hanni Willenbrock and Agnieszka S. Juncker.
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12 Chapter 1: A brief introduction to DNA micro-arrays

If a general expression pattern (that transfers between studies) can be found that signif-
icantly distinguishes between the conditions, this can potentially be used diagnostically.
For this classification approaches have been widely used, and feature selection is an
important issue, where for example PCA analysis has proven to be useful. Once a list
of genes distinguishing between groups of interest has been generated, the expression
profiles for these genes can be visualized. Figure 1.9 shows an example of this - here a
number of leukemia patients which belong to two diagnosis groups (”severe” and ”mild”)
are analyzed together (from Willenbrock et al. (2004)).

Due to the large number of genes and the fact that many genes are part of pathways
or regulatory modules, more advanced methods that aim at elucidating the modularity
within the data have been developed. One of the early approaches to finding modules from
expression data has been devised by Segal et al. (2003). Other examples are the widely
used divisive clustering methods such as PAM. A further approach is analyzing the Gene
Ontology (Ashburner et al., 2000) categories of the gene groups. Such an analysis could
reveal that certain GO-terms (e.g. a biological pathway or a sub-cellular localization) is
over-represented in the list of differentially expressed genes or modules/clusters, compared
to the background distribution.

A different type of analysis is the analysis of time-series data. Here a number of arrays
representing different time-points throughout an experiment are compared. A good ex-
ample of this approach is analysis of the cell cycle data reviewed in Gauthier et al. (2008)
- see Figure 1.10 for a graphical overview. It should be noticed that in this case it is the
gene expression profile (see Figure 1.10) throughout the experiment that is of importance
rather than an analysis of what is up or down regulated.
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Figure 1.10: Visualizing time-series data. Screen shot from the cyclebase.org webserver (Pa-
per VII) showing expression profiles for the Yeast gene ”HTA2” for six independent cell cycle experi-
ments.
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